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1. MOTIVATION

1.1. On the main theorem. The aim of these notes is to estimate sums of eigenvalues
of the Dirichlet Laplacian —Aq where Q is an open, bounded, and €% subset of RY.
We recall that —Aq is the self-adjoint operator associated with the quadratic form

Za(v) = [ |VuPde, Vo e HY(@).
Let h > 0 and consider
Ho=—h*Aq —1.

Let us denote by (\;);>1 the non-decreasing sequence of the eigenvalues of —Ag. We
would like to describe the behavior of the “total energy of the system” below 1,

Te(Ho)- = S (W2 — 1),
i>1
in the semiclassical limit h — 0. Our aim is to explain the proof of the following theorem
obtained by Frank and Geisinger. These notes are based on prerequisites in [4, Chapter
6] and are an exegesis of the short paper [3]. This “exegesis” of [3] has been influenced
by many interactions with S. Fournais, R. Frank, S. Larson, and T. (stergaard-Sgrensen
and also by the Ph.D. dissertation of S. Gottwald. The reader can consult the detailed
lecture notes [1] about spectral theory.

Theorem 1.1 (Frank&Geisinger ’11).

1
Tr(HQ)— = Ld’Q‘h_d — ZLdfl‘aQ‘h_d—i_l + 0<h—d+1) ’
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where
_d 2wy

L= () [ (€= 1)-de = (m) 1 20

1.2. Historical context and naive considerations. Theorem 1.1 is part of a rather
long story. This story started with Weyl in [7] and the asympopttic expansion of the
counting function

C _ w
Na(h) = |2155 +o(h™),  Ca= 55

Here, No(h) = |[{k > 1 : h2)\; < 1}|. Under the geometric assumption that € has no
“periodic point” and when {2 is smooth, V. Ivrii proved the second term asymptotics in
[5] (see also its translation):

Na(h) = |Q|Cyzh~¢ — i\amcd,lh—d“ + o(h™4*1). (1.1)

In general, Weyl’s asymptotic expansions can be obtained by means of microlocal tech-
nics. The reader can consult [2] where it is proved, for instance, that

[{w(h) < 1} = (2h) ™ / L Caaol

where the (Ai(h))r>1 are the eigenvalues of an elliptic pseudo-differential operator de-
fined by

O (a)u(o) = 2ah) ¢ [ cemmiha (200, ) udyar.

A very good introduction to semiclassical/microlocal analysis is the book by Zworski

[8].

Sometimes (especially in old references), the Weyl asymptotics is written in terms of
a large parameter A = h=3. The expansion (1.1) can be rewritten as

k> 1: 0 < M| = N(\) = |Q|CAE — icdfﬂam% +o(\T).

Note that,
A
2Cy .4 12C;_1 dt1 di1
N(u)du = |Q =% \2H1 - 27971 150)

| Nu = 101 N T o),

and also, by definition, of the counting function
A N(N) N(X)

/ N(u)du = -T(A\) + AN(A) = Z N =N, T\ = Z A -

0 k=1 k=1

Coming back to h, we deduce Theorem 1.1, under Ivrii’s assumptions. Our aim is to
obtain Theorem 1.1 by direct means and under weaker regularity assumptions. For that
purpose, one will use basic semiclassical tools, as the ones developped in [6].

Many generalizations of Theorem 1.1 can be considered (in various directions), with
the tools introduced in these lecture notes (presence of magnetic fields, Lipschitz bound-
aries), and are nowadays the subject of active research due to their connexions with
quantum chemistry.



2. LOCAL TRACES

2.1. Local traces inside. Let us consider here ‘Z}]Fd = —h?A — 1 acting on L?*(RY).
2.1.1. Computing kernels.

Definition 2.1. We define the unitary Fourier transform by
Fu©) = 0 [ .
Lemma 2.2. In the sense of quadratic forms, we have
(Y- <me wm=1p- (L),
Consider ¢ € €§°(R?). Then,
(LX) o < o

Lemma 2.3. We have
FLF P =h*P -1,
In particular,
Y = y_l]lR7 (h2£2 -7,

and

() = (2m) / VL (2€2 — 1)(y)dyde

R2d
= [ o) (1n (2 - D)@ —0).

Proposition 2.4. Consider p € €3 (R?). Then,

(i) The bounded operator ¢~y is Hilbert-Schmidt and

Wq
HSD’YhH% = WH@HQ-

(ii) The bounded self-adjoint operator pypp is trace-class. Moreover,

wq
3llel? (2.1)

(27h)
Proof. For the first item, we notice that the kernel K of ¢~ is given by

K(z,y) = (21) 2 p(2)F(1a_(h?€> — 1))(z — y) .

From the Parseval formula, we see that K € L?(R??) and

K13z = 2 2olP [ déte (1762~ 1).
]Rd

For the second item, it is sufficient to notice that

Tr(eynp) =

e = ey = (©7n)(evR)*,
and

Tr(evne) = lomll3 -
0

Corollary 2.5. For all ¢ € €1 (R?), go(i”,?id)_go is trace-class. Moreover, (cpf,?dgo)_
s also trace-class and

Tr(pLhp)- < Tr(o(Lh)-¢) -
Moreover,

Tr(e(Z") ) = ) el [ (62 = 1)-ae.
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Proof. The first part of the statement follows from Lemma 2.2 and Proposition 2.4. For
the second part, we consider a Hilbert basis (1) >1 such that (¢;);e is a Hilbert basis

of the negative (Hilbert) subspace of ¢$§dw. Then, for all j € J,

(05, (0B 0)-tj) = — (s, (0B )by < (W, (0 (L) ly)
and, for all j € N*\ J, (¢, (gpf,]f%dgp),qbﬁ = 0. This shows that 3., (¢, (¢$$d¢),wj>

is convergent, that the non-negative operator (cp,jfflgd ©)— is trace-class, and the inequal-
ity follows. Then, we write

(L _p = o(ZF)E (mz%é) |

1
The kernel of cp(.i”,]}%d)i is

Therefore, it is Hilbert-Schmidt and
a1 —dr—
(22 1 = (2m el [ (62— 1)-de.

2.1.2. When the minus goes inside.

Proposition 2.6. There exist C,hy > 0 such that, for all h € (0,hy), and all p €
Cgﬂl(Rd);
d d _
Te(0-Z5 p)— = Tr(p(L)-p)| < CR* Y| V?.
Proof. Consider y € %°(R?) such that px = ¢. Since xy,x is trace-class and 0 <
xYrX < 1, the Variational Principle provides us with

~ Te(e. 4 0) - < Tr(0 4 @) (xmm) - (2.2)
We write
XX = Y 145 5) (W5
j>1
so that

XV XVj = ;-
Note that, if ¢ € €5°(R?),

(s, (0L O)s) = (5, (L' 0 + [0, LR V0)bs) = (05, (D2 LX + ol LR 0))05)
so that
205, (L 00y = (. (VL + L = Lo e, BET)) )
and thus
(05 (02 005) = R (05, (P25 = 5l 25T ) w5),

since .,
s lo, 1] = =212Vl
Thus, if ¢ € €5°(RY),
Dulpv) = Wy, (0L )y) = Re iy, @ L5 ) + W25, [V pl0)
This formula can be extended to ¢ € €, (RY). We have
155, (P ) 5) = Re (85, 0L (xmx)¥y) + b (5, Vel emx)y) -

. d .
Since ,,?}llR is a local operator, we have

i (5, (0 LR O)5) = —Re (5, X (LR X)) + B2y, [VolPxmxt;) -
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Now, we observe that cp2x($}]§d)_x) and |[Vo|?xynx are trace-class. In particular, the
series .- 1 {(¥j, (cp,f,?dap)z/w is convergent and
d d
> iy, (0L o)) = —Tr(*x (L) -x) + P Te([ Ve xmx) -
j=1
By using the cyclicity of the trace, we also get
d d
> (s, (0L o)) = —Tr(p( Ly )—¢) + B2Tr(|Ve|ym|Vel) .
Jj=1
This shows that the left-hand side does not depend on the choice of the diagonalizing

Hilbert basis (¢;);j>1. By definition, the left-hand side is T‘r(wﬁ,?dgo(xfyhx)), and we
have proved that

d d
Tr(p 2 o(xmx)) = —Tr(o(L ) =) + P Tr(| Vol V) .
By (2.2), this implies that

d d
Tr(p L )= = Tr(p(L" ) —p) — K Tr(|Ve | Vel) -
With Proposition 2.4, we get
d d _
Tr(0 2 ¢)— = Tr(p( L )—p) — CR* ||V
0

Rd
2.2. Local traces on the boundary. Let us consider here %), * = —h?A — 1 acting
on L2(]Ri) with Dirichlet boundary condition on x4 = 0. Most of the statements of

. . R4 .
the previous section may be adapted to .Z), ¥, except, of course, the computation of the
kernel.

Proposition 2.7. For all ¢ € €9(R?),

Tr(p( L)) = 2(2m)h 4 /

S02(%)/ (&% = 1)_sin®(h™'wq€q)déda .
R Rd

d
+

d
Proof. Let us diagonalize EhR *. For that purpose, let us consider the application 7 :
L?(R%) — L*(RY) defined by '

T =—FoS,
V2
where S is defined by S¢(x) = ¢(x) when 24 > 0 and Sv(z) = —¢(x) when x4 < 0. The
operator 7 is an isometry and .7 : L2(R%) — L2 ,(R?) is bijective and 71 = /2.7 !
where we have used .Z : L2;,(RY) — L2 ,(RY). We have
R4 _

& T =T WP -1)T.

In fact, 7 can be related to the “sine Fourier transform”:
1

T () = E(W% /R TS (a)de = —iv2(2m) /R e sin(w 6 (a)da

Notice that o )
(L = 7 e -1)2 7.
In particular,
Rd 1 _ % /
(&, ") 2(x) = 2
21 /

(2m)?

e (R2E 2 — 1)2 / e W' sin(yata) i (y)dyde
]Rd d

RY

- Aybty) [ e sinfyata) (2162 1)

d
RJr
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d 1
Thus, the kernel of ($$+)Egp is
2i ixé —iy' & - 2112 1
_WQO(?J) /Rde S sin(yq€q)(h7|€]7 — 1)2d€.

The squared L?-norm of this kernel is

4
@y /Rd+ dylw(y)z/Rd dz

+

~ oy L, wleF [ o

= (Qi)d /Rle dylw(y)P/Rd dé¢ sin? (yalq) (R2[€)2 — 1) .

2

_ o 1
[ e sinaga (el - 1t

2

/ e i in (o) (2] — 1)2de
Rd

Rd 1 Rd
This shows that (£, ©)2 ¢ is a Hilbert-Schmidt operator, that ¢(.Z, *)_¢ is trace-class,

and
d
R+

L)) = g [, Wle) [ agsint ) 0216 — 1)

Rd
In fact, one can estimate the asymptotic behavior of Tr(p(Z, ©)_¢).

Lemma 2.8. Let us consider the function defined fort > 0 by
30 = [ (€~ 1) cost2agaic.
Rd
Then, for allt > 0,

1
J(t) = CoRe K (1), K(t):/ €2 (1 — 4 2) 00:/ (1 - [o2)do.
—1 B

d—1
_d+1l
Moreover, J(t) T ot~ =2 7).
Proof. We have
1
90 = [ dgacostztar) | (1-& —[¢P)ae’
-1 l&/12<1—[€al?

By using a rescaling,

/ (1— & €2’ = (1 - €3)F / (1— Jo)dv.
[€72<1—€q4)2 Bd-1

Let us now consider K. We let 6 = d‘FTl. By integrating by parts |d] times, we can write

1
K(t) =t / Xk (u) (1 — u?) Pl du,
-1

where k is a polynomial.
If 6 € N, another integration by parts yields

K(t) = o),

which is the desired estimate.
If not, we have § — |§] > 0 and we can integrate by parts:

1
K(t) = —it_w_l/ e uk(u) (1 — u?)? Py,
-1
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where we used that (1 —u?)9~ 101 €~L1((—1, 1)) since =1 < 0 — |§] — 1 < 0. Now, we
can write, for some smooth function k,

1 1
/ 2k (u) (1 — u?) -1y = / 2 (u) (1 — u)®~ 1 qu,
0 0

and also, for some smooth function £,
1 1
/ €2iUtuk(u)(l _ u2)(5—L6J—1du _ e?it/ e_QiUt/VC(U)UCS_L&J_IdU.
0 0
Note that

1
/ eizwtk@u)véf Léjfldv
0

1 1

= I;:(O)/ emtv‘;[‘ﬂldv—i—/ e 2 (e (v) — k(0)v? ¥y .
0 0

We have

1 t

/ o 2ivt - [6]-1 3, _ tw—a/ e=2iv =181 =14y, — (41810
0 0

where we used that the last integral is convergent (by using integration by parts). We

can write, for some smooth function 7,

k(v) = k(0) = vr(v),
so that
1 1
/ e 2 (k(v) — k(0))o’ 1) dy = / e () ldy = o(t71) = otV 70) .
0 0
We deduce that

1
/ XMk (u)(1 — u?)’ P du = o101 7°).
0

In the same way,

0
/ Mk (u) (1 — u?) Pl 1dy = (1979 .
-1

Thus,

K(t) = o 0141010
and the conclusion follows. O
Proposition 2.9. Consider ¢ € €3 (R?). Then,

L4 _
[ el )Pds’ + O 9 ).
Ra-1

d R¢ 2
h Tr((to(gh )—90) = LdH(‘OHLQ(Ri) -
Proof. Let us write

d
RY

e T2 )0) = [ @) [ (€= 1)1 - cos(2h mug)deds.

d
4
Let us now consider the (absolutely convergent) integral

I(h) = /R , ©? () /R ) (€2 —1)_ cos(2h 'z 46y)dedz .

I(h):h/Ri

I(h) =h /Q ( /0 o o (x, ht)J(t)dt) da’, (2.4)

We have
(' ht) / (€2 —1)_ cos(21€,)deda'dt | (2.3)
Rd

and thus
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where @ is a compact subset of R4, We write, uniformly with respect to 2’ € Q,
(2, ht) — p* (2, 0)] < [V ?[lcht -

Therefore,

400 +00 +oo
/ cpz(x’,ht)J(t)dt—/ ga2(:c’,0)J(t)dt| < HV@?Hooh/ tJ(t)dt .
0 0 0
This shows that
+o00 +o0
i -n [ [P0 00 < QITe [
Q 0 0
We notice that
€ = 1-costatea)dza = Re [ (€ - 1)_Feuagy,
R R
Then, by using the inverse Fourier transform,
: 1
/ /(52 — 1)_e?™adgdt = S (2m)(|€']° = 1)-.
R JR 2
Thus,

(2m) ¢ /0 o J(t)dt = Li—l .

3. LOCALIZATION FORMULA

Let us now start to explain how to glue the local trace estimates to estimate the
global trace. For that purpose, one need to introduce a convenient partition of the
unity. Consider x € %§°(R?%) supported in B := B(0,1) and such that ||x|[z> = 1.
Consider ¢ a smooth positive and bounded function such that ||[V/||. =: a < 1.

Lemma 3.1. Consider F : R* - R? defined by
T —u

F(u) = @

Then, F : R* — R? is surjective. Moreover, letting U = F~Y(B), the restriction
F:U — B is a bijection.

Proof. Let us prove that F is surjective. Take u € R?%. For all t € R,
F(z —tu) = g(t)u, g(t) =tl(x —tu)".

Note that ¢g(0) = 0 and ¢g({~) > 1. By the intermediate value theorem, there exists
to € [0, o] such that F(z — tou) = u.
Let us prove that F is injective. Consider (u,v) € U? such that:

((w)Yu—z) =) (v—21).
We get
0=L()(u—=)—L(u)(v—1x) = (l(v) = l(u)(u—x) + (u)(u—"0v),
so that
Lu)|lu —v| < alu—v||lu—2z| < al(u)u—ol|.

Thus, u = v. This shows that F' is injective, and thus bijective. (|



Lemma 3.2. Let dF, be the differential of F at u. We have
VYh e RY,  dF,(h) = —(u) " th — £(u)"2(Ve(u) - h) (z — u).

Moreover, ~

((u)d det dF,| =1+ £(u) " 'Ve(u) - (x — u).
In particular, for all u € Q, ((u)? detdF,| >1—a >0, and F is a smooth diffeomor-
phism.
Proof. We have B

| det(4(u)dF,)| = det(Id + M),

where M = £(u) " [014(u)(x — ), ..., 04l(u)(z — u)]. By using the multilinearity of the
determinant, we see that

det(Id + M) = 1+ L(u) "' Ve(u) - (x —u).

O
We let
Ju(z) =1+ 0(w) Yo —u) - VL(u),
and
T —u 1
ule) = x (5t ) D).
Lemma 3.3. We have, for all z € RY,
bu(x)20(u)"du = 1.
R4
Proof. By using the change of variable F,
2
bulaPtla) du = [ ou(Pew)du= [ (”’” - “) Ju(@)0(w)du = 1.
R U B £(u)
O
Lemma 3.4. Let z € R? and consider u € U.
(1—a)l(u) <l(z) <1+ a)l(u).
Proof. We have
[0(u) —l(x)| < alu—z| < al(u).
O

Lemma 3.5. For all ¢ € Dom(2},),

/ () 2y (S du

Moreover, there exists C' = C(a, x) > 0 such that, for all ¢ € Dom(2y,),

20) > [ )1 2u(00)du= O [ o)~ 20,0dedu.

Rd

Proof. We write the classical localization formula, for all v € R,
(b 620) = Dulonw) =1 [ 6PV 0,
and integrate
/ ()~ L), o2 du—/ 0(w) " 2y (durp)du — h2/2d 12|V g | 26 (w) ~4dadu .
We have :
20) = | @)1 2u(oi)du =12 [ | Vet o) dadu.
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Then,

Vetu = Ju(z)20(u) " Vy (‘Z(;;L) + %x <x ;“) I3V, T,

l-a<Jy<1+a. (3.1)

7w £ v () )

< Cla)t(z)~? <‘X <$€(_u)u> E ‘VX <xf(_u)u> 2) |

Let us integrate this last inequality with respect to u, use the change of variable F, and
(3.1) to control the Jacobian,

/ Vabu[26(u)~4du < G, x)0(z) 2
Rd

On the support of ¢,

Note also that
Voduy = 0(u) VL (u).
It follows that

Vadu|? < C(a)f(u)~2 (‘X <$ - u)

Thus,

— Clanx) /R 0) ) P

< C(a, x) /I[{?d 0(u) " 20(u) " b Pdadu .

4. FROM THE LOCAL TRACES TO THE GLOBAL TRACE

4.1. From the local traces to the global trace. The following proposition provides
us with a lower bound of Tr(.%,)—.

Proposition 4.1. We have the following trace estimates.
(i) (Pointwise estimates) For all u € R?,

Tr(qbugh(z)u)— < Tr(¢u($h)—¢u) = Tl"(gf)i(fh)_) :

Moreover, for a Hilbert basis (1;)j>1 adapted to the negative subspace of Lt we

have
Te(¢(Zh)-) = Y Nl dutss®
jed
(ii) (Integrated estimates) In addition,

/ Tr(¢uLnpu)—L () *du < / Tr(¢u(Lh)—du)l(u) Ydu < Tr(L)- .
R4 R4

Proof. The first item follows from the same analysis as in the proof of Corollary 2.5, and
from the cyclicity of the trace. The second item follows from the Fubini-Tonelli theorem
and

¢2 (x)0(u) " ddu=1.
Rd

Let us now consider the upper bound.

IWe mean that there exists J C N* such that (1;);es is a (Hilbert) basis of rangel x<o(.%).
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Proposition 4.2. We have

(%) / ) Tr(buLnd)—du + Ch2 [ 0(x)2dz,
Q**

where 0 = Uyeq+B(u, £(u)) and Q* = {u € R? : suppg, N Q # 0}.
Proof. From Lemma 3.5,

20)> [ 001 2pulo)du

Consider (1;);>1 a Hilbert basis adapted to the negative subspace of .%,. We have
—= S 2w < =X [ ) (@(0uw) ~ Cw) P60 ) du
JeJ jeJ
Consider v € Q* and notice that, for all p, € (0, 1),
> (2n(dutyg) — Ch2e(u) =2 | dutss||?)
jeJ

=3 (1= pu) 2n(duhs) + > (pu2n(duth;) — CR2L(w) 2| putss||*) -

jeJ jeJ
This can rewritten as
D (2u(Puthy) — CR*e(w) 2| duttj]|®)
jeJ
= (1= pu) Te(duindully) + Tr(du (pulhy — Ch?(u) %) G115 ) .

where II;” = 1).o(£},) (which has finite rank). From the Variational Principle, we have

= (2u(Putty) — CR*(w) || putt;|®)

jed

(1 - pu)Tl" (d)ufhd)u) +Tr (ﬁbu (pu-iﬂh - Oh2 ( ) ) ¢u)
Tr (puLhdu) -+ Tr (bu (puth — CR*(u) %) bu) _

Let us take p, = Ch?((u)~2 and notice that

Tt (¢u (push — Ch*0(u)72) ¢u) _ = Ch*0(u) > Tr (¢u (—h*A —2) ¢y,) _

<
<

Since
Tr (6 (~h2A = 2) 6)_ < Tr (60 (=524 = 2)_6u) < Choul?,

we deduce that
Tr(%)- < / 0(u) T (¢uLybu) —du + Ch2~4 / / 0(u)~ 22 (2)dadu .
Rd Q* JRA
Since

/ / ((u) 22 (2)dadu < C / / w) 4Pt (z)dadu < C | £(z)2d.
* Rd * *k Q**
O

Therefore, we must estimate the local trace Tr(¢, L5 du)—.
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4.2. Estimates of the local traces. Let us consider
A0 = [ tw) (6. L) -du. (4.1)
Q*
and write

I (h) = ; 0(u) VT (¢ L) —du + ; 0(u) T (puLhdu)—du, (4.2)

where Uy = {u € Q* : supp¢, N9 = 0} and Uy = Q*\ Uy.
4.2.1. Inside balls. From Proposition 2.6 and Corollary 2.5, we have, for all u € Uy,
Tr(uLhdu)— = Tr(du(Lh)-du) + O(h* = (u)?)

_ B B (4.3)
= B~ Lal|$ull T2 + O (u)?) .

4.2.2. Boundary coordinates. Considering u € Us, one will need boundary coordinates.
Given a ball B (small enough) such that B N9 # (), one can consider 2o € B N 9N).
By assumption, the boundary can be locally described as the graph of a €% function:

BnoQ={(, f(z)),2 € D}.
We can even assume that zo = 0, f(0) =0, and V,/f(0) = 0 so that
sup |V f(2")| < Ce*.
x'eD

This description of the boundary allows to define new coordinates y = k(x):
VjE{l,...,d—l}, Yj = Zj, yd:'wd_f(x,)‘

The map #: D xR — D x R is a local ¢'-diffeomorphism whose Jacobian is 1. It sends
BN oQ onto D x {0}.
Now, if ¢ € €5°(B), we let

o=por",
which is extended by 0 to R%.
4.2.3. Boundary balls.
Lemma 4.3. We have

ITe(GuZid)— — Tr(GuZy " Gu)| < COu)*+n1,

[ diaa= [ , B,

qbida = / gz;i(ac/, 0)dz’ + ﬁ(ﬁ(u)dipﬂa) )
o0 Rd-1

and

Proof. We have, by definition of the surface measure,
o= [ VIFNFPEE. 0
[2/9) Rd-1
Then, we set ¥ = ¢,0p € H}(2) and write, in the sense of quadratic forms,
(—h2ANY, ) = (1+ O(0(u)*))(—h? AR T, ) .
In particular,
(—h2AT ) > (1 — Cl(w)*)(—h* AR, ) .
By definition,
4~ o~ -
Tr(GuZida)- == D Pulduty) < — D (1= Clw)™) (=AM, 05) — [F7) .

JjEJ ™ JjeJ ™
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Then,
Tr(6uZhdn)- < — 3 (1= Clu)™) (=h2A% 0, 05) = |[9,7) |

jeJ—
so that

Tr(@uhd)- < = D (1= 200w)) [(~R2AFN T, Bj) — |3,
JjeEJ—
[} 45 T, T,
+ Ol [(~h2A™H, B5) - 231
From the Variational Principle, it follows that
~ d o
Tr($uLhdu)— < Te(Gudy * du)— + CLw)*h~H(u)?.

Exchanging the roles of the two quadratic forms, the conclusion follows.

Lemma 4.4. For u € U, we have

_ _gu1La—
Tr(puLhndu)- — <h Lallbullfzy — ™" 1 : H‘buH%Q(am)

< CU(w)* TR~ 4 Cl(u) 1244 L Co(u)?2h>1.

Proof. Tt is enough to combine Lemma 4.3 and Proposition 2.9. (|

5. PROOF OF THE TWO-TERM ASYMPTOTICS

Finally, we can prove Theorem 1.1.

5.1. Gathering the estimates. From Propositions 4.1 and 4.2, we have, with (4.1),
F(h) < Te( L) < 7 (h) + Ch2 / () 2da.

We use the splitting (4.2), the estimate (4.3), and Lemma 4.4 to deduce, via Lemma
3.3,

Lq_
(%) - — <hde\Q] - hd+1‘jll|aﬂ|>‘

< Ch¥ 1 / dul(u) 2+ C [ du (é(u)ah_d—i—E(u)_HQO‘h_dH) .

Uz

5.2. Estimating the remainders. At this stage of the analysis, we have to make a
choice of ¢(u). Consider

() = %\/ﬁg + dist?(u, 00),

for some ¢y > 0 small enough to be determined. This choice fulfills all the requirements
of Section 3. We have (by using coordinates in a fixed neighborhood of 02)

/ dub(u)™2 < Cty*t.

In addition, for all u € Us, we have ¢(u) > dist(u,0€2) and this is equivalent to

1
dist(u, 00) < —4,
(1.09) < =60

so that
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We deduce

/ du (E(u)"‘h_d + é(u)_1+2“h_d+1) < Chmdbte 4 op=dtig2e
Us

It remains to choose £y in order to optimize the remainders:

R+ R 4 b

27 .
We choose £y = h2+e and the remainders become

(1]

2]
8]

h=d(h1T2ts 1 h2ra ) = o(h!179).
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