Exercices sur la densité

Nicolas Raymond

6 février 2011

1 $L^{\infty}(\Omega)$ n'est pas séparable, Brézis, p. 66

Lemme 1.1 Soit E un Banach. Soit $(O_i)_{i\in I}$ une famille d'ouverts non vides et deux à deux disjoints et telle que I ne soit pas dénombrable. Alors, E n'est pas séparable.

Preuve.

Le raisonnement se fait par l'absurde. Soit (u_n) une suite dense de E. Pour tout $i \in I$, on a

$$O_i \cap \{u_n\} \neq \emptyset$$
.

Pour tout $i \in I$, il existe un entier n(i) telle que $u_{n(i)} \in O_i$ Ainsi, il existe une application (injective) $i \mapsto n(i)$ et on en déduit que I est dénombrable.

Montrons alors que $L^{\infty}(\Omega)$ n'est pas séparable. Pour tout $a \in \Omega$, il existe $r_a > 0$, $B(a, r_a) \subset \Omega$. On note $u_a = \mathbb{1}_{B(a, r_a)}$ et on considère la boule ouverte :

$$O_a = \{ f \in L^{\infty} : ||f - u_a||_{\infty} < \frac{1}{2} \}.$$

 O_a est un ouvert non vide et les O_a sont deux à deux disjoints.

2 Lemme fondamental des distributions (adaptation du Brézis)

Lemme 2.1 Soit $f \in L^1_{loc}(\Omega)$. On suppose que pour tout $u \in C_0^0(\Omega)$:

$$\int_{\Omega} fu = 0.$$

Alors, on a: f = 0 p.p.

Preuve.

On suppose dans un premier temps que Ω est borné et donc que $f \in L^1(\Omega)$. Il existe $f^{\epsilon} \in C_0^0(\Omega)$ telle que :

$$||f - f^{\epsilon}||_{L^1} \le \epsilon.$$

On en déduit avec l'hypothèse que, pour tout $u \in \mathcal{C}_0^0(\Omega)$:

$$\left| \int f^{\epsilon} u \right| \le \epsilon ||u||_{L^{\infty}}.$$

Nous voulons prendre pour u le signe de f^{ϵ} , c'est pourquoi nous introduisons :

$$\sigma_{\eta}(f^{\epsilon}) = \frac{f^{\epsilon}}{\sqrt{(f^{\epsilon})^2 + \eta^2}}.$$

Nous trouvons donc:

$$\int \frac{(f^{\epsilon})^2}{\sqrt{(f^{\epsilon})^2 + \eta^2}} \le |\Omega|\epsilon.$$

On applique le théorème de convergence dominée pour faire tendre η vers 0:

$$\int |f^{\epsilon}| \le |\Omega|\epsilon.$$

On en tire:

$$\int |f| \le (|\Omega| + 1)\epsilon$$

et on fait tendre ϵ vers 0.

Quand Ω n'est pas borné, il suffit de prendre une suite exhaustive de compacts.

3 Inégalité de Poincaré, Hirsch-Lacombe, p. 307

Soit Ω un ouvert borné dans une direction (par exemple $\Omega \subset [A, B] \times \mathbb{R}^{d-1}$). On note $H^1_0(\Omega)$ l'adhérence dans $H^1(\Omega)$ de $\mathcal{C}^\infty_0(\Omega)$. Montrons que pour tout $u \in H^1_0(\Omega)$:

$$||u|| \le (B - A)||\nabla u||.$$

Nous allons déjà supposer que $u \in \mathcal{C}_0^{\infty}(\Omega)$. Ainsi, pour $x \in \Omega$, on écrit (on prolonge u par 0 hors de Ω) :

$$u(x_1, x_2, \dots, x_d) - u(A, x_2, \dots, x_d) = \int_A^{x_1} \frac{\partial u}{\partial x_1}(t, x_2, \dots, x_d) dt.$$

Par Cauchy-Scwharz, on a:

$$|u(x)|^2 \le (B-A) \int_A^B \left| \frac{\partial u}{\partial x_1}(t, x_2, \cdots, x_d) \right|^2 dt.$$

Il ne reste alors qu'à intégrer sur Ω .

Complétude de $H^1(\Omega)$ On munit $H^1(\Omega)$ de la norme suivante :

$$||u||_{H^1(\Omega)}^2 = ||u||^2 + ||\nabla u||^2.$$

Soit u_n une suite de Cauchy pour cette norme. Alors (u_n) et (∇u_n) sont de Cauchy pour la norme L^2 . Par complétude de L^2 , il existe deux fonctions u et v de L^2 telles que : $u_n \underset{L^2}{\to} u$ et $\nabla u_n \underset{L^2}{\to} v$. Cela entraı̂ne la convergence au sens des distributions $u_n \underset{D'}{\to} u$ et $\nabla u_n \underset{D'}{\to} v$. Mais, au sens des distributions, on a : $\nabla u_n \underset{D'}{\to} \nabla u$. Les deux distributions v et ∇u coı̈ncident et donc $\nabla u \in L^2$ et la conclusion s'ensuit.