
Magnetic Harmonic Approximation

Nicolas Raymond

N. R. 1 / 123



1 State of the art
Context and motivations
Groundenergy and magnetic curvature
Magnetic Born-Oppenheimer approximation
Magnetic WKB constructions

2 From the Lorentz force to the eigenvalues
Eigenvalues asymptotics
In two dimensions
In three dimensions

3 WKB constructions in 2D wells
Result
Heuristics
Preliminaries
Eikonal eiquation
Transport equations

N. R. 2 / 123



State of the art Context and motivations

This talk is devoted to the magnetic Laplacian

L~ = (−i~∇− A)2 ,

- acting on L2(Ω) with Ω ⊂ Rd ,

- with A : Ω→ Rd ,

- with some boundary conditions on ∂Ω.
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State of the art Context and motivations

A question to the audience

Is the magnetic Laplacian elliptic?
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State of the art Context and motivations

What are our motivations?

i. Superconductivity (Ginzburg-Landau functional, third critical field, etc.),

ii. classical mechanics of charged particles submitted to magnetic fields and its
quantization,

iii. analogy between the electric Laplacian −~2∆ + V and the magnetic Laplacian
(−i~∇− A)2.
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State of the art Context and motivations

Electric Harmonic Approximation

Let us recall what the harmonic approximation is. If the electric potential V admits a
unique and non degenerate minimum (not attained at infinity), then the m-th eigenvalue
λm(~) satisfies

λm(~) = V (xmin) + µm~ + o(~) ,

where µm is the m-th eigenvalue of D2
x + 1

2
HessxminV (x).
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State of the art Context and motivations

What are magnetic fields?

The magnetic 1-form is

α =
d∑

j=1

Akdxk

and the magnetic 2-form dα is identified with

[d = 2] B = ∂1A2 − ∂2A1,

[d = 3] B = (∂2A3 − ∂3A2, ∂3A1 − ∂1A3, ∂1A2 − ∂2A1).
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State of the art Groundenergy and magnetic curvature
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State of the art Groundenergy and magnetic curvature

About λ1(~)

Until 2006, the main motivation was about estimating the third critical field in the
Ginzburg-Landau theory (see the book by Fournais-Helffer). There were many con-
tributions (Bauman-Philips-Tang, Bolley-Helffer, Erdös, etc.). These works aimed at
estimating one or two terms in the semiclassical expansion of λ1(~).
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State of the art Groundenergy and magnetic curvature

An example of asymptotic result

Among a vast literature, let us pick up one result.

Theorem (Helffer-Morame)

Assume that Ω ⊂ R2 is smooth and bounded. Assume also that B = 1 and that the
boundary carries the magnetic Neumann boundary condition. Then

λ1(~) = Θ0~− C1κmax~
3
2 + o(~

3
2 ) .

A similar theorem has been proved by the same authors in three dimensions. It involves
much advanced geometric considerations and a “magnetic curvature”.
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State of the art Groundenergy and magnetic curvature

What about λ2(~)?
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State of the art Groundenergy and magnetic curvature

Is λ1(~) simple?
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State of the art Groundenergy and magnetic curvature

Propaganda

Bound States of the Magnetic Schrödinger Operator
EMS Tracts (27) (2017).
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State of the art Groundenergy and magnetic curvature

Until 2009, there were only three results concerned with the other eigenvalues, in two
dimensions:

- when B = 1, Ω bounded and smooth, magnetic Neumann condition, see
Fournais-Helffer,

- when B has a unique and non-degenerate minimum, see Helffer-Kordyukov,

- when Ω is a corner domain, see Bonnaillie-Noël–Dauge.

The methods used to prove these results strongly differ.
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State of the art Groundenergy and magnetic curvature

Hidden adiabatic limits

Actually, we may guess from the aforementioned literature that magnetic fields induce
multi-scales phenomena.

We have been able to describe far more than the two-terms asymptotic expansions of the
groundstate. In various geometric situations, we have expanded all the low lying
eigenvalues at any order (in terms of the asymptotic parameter):

- when the field is variable and with a Neumann boundary (R.), or when it vanishes
(Dombrowski-R.), in dimension two,

- in the presence of a flat boundary and variable magnetic field (R.),

- in the presence of an edge singularity in dimension three (with Popoff-R.),

- in the presence of a conical singularity (with Bonnaillie-Noël–R.).

We have established that, in all these situations, the magnetic Laplacian is microlocally
and unitarily equivalent to an pure electric Laplacian in an “adiabatic form”.
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State of the art Groundenergy and magnetic curvature

In fact, it is not always possible to make such a reduction:

- in the case of non-vanishing variable magnetic fields in Rd (Helffer-Kordyukov),

- in the case certain vanishing magnetic fields (Dauge-Miqueu-R.),

- in cases with corners (Bonnaillie-Noël–Dauge–Popoff, groundenergy).
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State of the art Groundenergy and magnetic curvature

Electric Born-Oppenheimer approximation

Consider
−h2∆s −∆t + V (s, t) .

The main idea, due to Born and Oppenheimer, is to replace, for fixed s, the operator
−∆t + V (s, t) by its eigenvalues µk(s). Then we are led to consider for instance the
reduced operator

−h2∆s + µ1(s) ,

and to apply the semiclassical techniques à la Helffer-Sjöstrand.
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State of the art Groundenergy and magnetic curvature

Quantum averaging

The idea is to find P~ such that

[P~,L~] = O(~n) .

We look at this projection in the form

P~ = OpW
~ (Πx,ξ,~) , where x is the effective semiclassical variable .

See Jecko, Martinez-Sordoni, Panati-Spohn-Teufel where such ideas are developed in
the context of quantum evolution.
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State of the art Magnetic Born-Oppenheimer approximation
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State of the art Magnetic Born-Oppenheimer approximation

A partially semiclassical magnetic Laplacian

The investigation of magnetic Laplacians leads to the self-adjoint operators on the space
L2(Rm

s × Rn
t , dsdt) of the following type

Lh = (hDs − A1(s, t))2 + (Dt − A2(s, t))2 ,

where A1 and A2 are polynomials.
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State of the art Magnetic Born-Oppenheimer approximation

Let us write the operator valued symbol of Lh. For (x , ξ) ∈ Rm × Rm, we introduce the
electro-magnetic Laplacian acting on L2(Rn, dt):

Mx,ξ = (Dt − A2(x , t))2 + (ξ − A1(x , t))2 .

Denoting by µ(x , ξ) its lowest eigenvalue we would like to replace Lh by the m-dimensional
pseudo-differential operator:

µ(s, hDs).

N. R. 21 / 123



State of the art Magnetic Born-Oppenheimer approximation

Assumption 1

Assumption

- The family (Mx,ξ)(x,ξ)∈Rm×Rm is analytic of type (B) in the sense of Kato.

- For all (x , ξ) ∈ Rm ×Rm, the bottom of the spectrum of Mx,ξ is a simple eigenvalue
denoted by µ(x , ξ) (in particular it is an analytic function) and associated with a
L2-normalized eigenfunction ux,ξ ∈ S(Rn) which also analytically depends on (x , ξ).

- The function µ admits a unique and non degenerate minimum µ0 at point denoted
by (x0, ξ0) and lim inf

|x|+|ξ|→+∞
µ(x , ξ) > µ0.

- The family (Mx,ξ)(x,ξ)∈Rm×Rm can be analytically extended in a complex neighborhood
of (x0, ξ0).
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State of the art Magnetic Born-Oppenheimer approximation

Assumption 2

Assumption

Under the last assumption , let us denote by Hessµ(x0, ξ0) the Hessian matrix of µ at
(x0, ξ0). We assume that the spectrum of the operator Hessµ(x0, ξ0)(σ,Dσ) is simple.
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State of the art Magnetic Born-Oppenheimer approximation

Asymptotic expansions of λn(h)

Theorem (Bonnaillie-Noël–Hérau–R.)

For all n ≥ 1, there exists h0 > 0 such that for all h ∈ (0, h0) the n-th eigenvalue of Lh

exists and satisfies

λn(h) = λn,0 + λn,1h +O(h
3
2 ) ,

λn,0 = µ0 and λn,1 is the n-th eigenvalue of 1
2
Hessx0,ξ0 µ(σ,Dσ).

In concrete situations the term λn,1 involves a curvature term. Generalizations appear in
the thesis of Keraval (Weyl laws).
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State of the art Magnetic Born-Oppenheimer approximation

Flavor of the proof

Let us recall the formalism of coherent states. We define

g0(σ) = π−m/4e−|σ|
2/2,

and the usual creation and annihilation operators

aj = 1√
2
(σj + ∂σj ), a∗j = 1√

2
(σj − ∂σj ),

which satisfy the commutator relations

[aj , a
∗
j ] = 1, [aj , a

∗
k ] = 0 if k 6= j .
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State of the art Magnetic Born-Oppenheimer approximation

We notice that

σj = 1√
2
(aj + a∗j ), ∂σj = 1√

2
(aj − a∗j ), aja

∗
j = 1

2
(D2

σj + σ2
j + 1) .

For (u, p) ∈ Rm × Rm, we introduce the coherent state

fu,p(σ) = eip·σg0(σ − u) ,

and the associated projection, defined for ψ ∈ L2(Rm × Rn) by

Πu,pψ = 〈ψ, fu,p〉L2(Rm,dσ)fu,p = ψu,pfu,p ,

which satisfies

ψ =

∫
R2m

Πu,pψdudp ,

and the Parseval formula

‖ψ‖2 =

∫
Rn

∫
R2m

|ψu,p|2dudpdτ .
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State of the art Magnetic Born-Oppenheimer approximation

We recall that

(aj)
`(a∗k )qψ =

∫
R2m

(
uj + ipj√

2

)`(
uk − ipk√

2

)q

Πu,pψdudp.
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State of the art Magnetic Born-Oppenheimer approximation

The rescaled operator (s = x0 + h1/2σ, t = τ) is

Lh =
(
Dτ + A2(x0 + h1/2σ, τ)

)2
+
(
ξ0 + h1/2Dσ + A1(x0 + h1/2σ, τ)

)2

and
Lh = L0 + h1/2L1 + hL2 + . . .+ hM/2LM .
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State of the art Magnetic Born-Oppenheimer approximation

If we write the anti-Wick ordered operator, we get

Lh = L0 + h1/2L1 + hLW
2 + . . .+ (h1/2)MLW

M︸ ︷︷ ︸
LW

h

+ hR2 + . . .+ (h1/2)MRM︸ ︷︷ ︸
Rh

,

where the Rd are the remainders in the anti-Wick ordering and satisfy, for d ≥ 2,

hd/2Rd = hd/2Od−2(σ,Dσ),

where the notation Od(σ,Dσ) stands for a polynomial operator with total degree in (σ,Dσ)
less than d . We recall that

LW
h =

∫
R2m

Mx0+h1/2u,ξ0+h1/2pdudp .
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State of the art Magnetic WKB constructions
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State of the art Magnetic WKB constructions

We reduce here our study to the case when A2 = 0. We therefore focus now on operators
of the form

Lh = D2
t + (hDs + A1(s, t))2.
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State of the art Magnetic WKB constructions

Theorem (Bonnaillie-Noël–Hérau–R.)

Under our assumptions, there exist a function Φ = Φ(s) defined in a neighborhood V of
x0 with ReHess Φ(x0) > 0 and, for any n ≥ 1, a sequence of real numbers (λn,j)j≥0 such
that

λn(h) ∼
h→0

∑
j≥0

λn,jh
j ,

with λn,0 = µ0. Besides there exists a formal series of smooth functions on V × Rn
t ,

an(.; h) ∼
h→0

∑
j≥0

an,jh
j , with an,0 6= 0 such that

(Lh − λn(h))
(
an(.; h)e−Φ/h

)
= O (h∞) e−Φ/h .

In addition, there exists c0 > 0 such that for all h ∈ (0, h0)

B
(
λn,0 + λn,1h, c0h

)
∩ sp (Lh) = {λn(h)} .
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State of the art Magnetic WKB constructions

Thanks to our theorem giving the splitting of the lowest eigenvalues, we have sharp asymp-
totic expansions of the eigenvalues. In particular, one knows that they become simple in
the semiclassical limit and we get the approximation of the eigenfunctions by the WKB
expansions.
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State of the art Magnetic WKB constructions

Flavor of the proof

We write
L\h = D2

t + (hDs + A\)2, A\(s, t) = ξ0 + A1(x0 + s, t) .

In order to lighten the notation, we introduce

M\
x,ξ =Mx+x0,ξ+ξ0 , u\x,ξ = ux+x0,ξ+ξ0 , µ\(x , ξ) = µ(x + x0, ξ + ξ0) .

We have (
M\

x,ξ

)∗
=M\

x,ξ
, ∀x ∈ Rm , ∀ξ ∈ Cm .

The assumption A2 = 0 implies the fundamental property:

u\x,ξ = u\
x,ξ
.
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State of the art Magnetic WKB constructions

We conjugate L\h via a weight function Φ = Φ(s) and define

L\Φ = eΦ(s)/h L\h e−Φ(s)/h

= D2
t + (hDs + i∇Φ + A\)2

= L\0 + hL\1 + h2L\2 ,

with

L\0 = D2
t + (i∇Φ + A\)2 =M\

s,i∇Φ(s) ,

L\1 = 1
2

(
Ds · (∇ξM\)s,i∇Φ(s) + (∇ξM\)s,i∇Φ(s) · Ds

)
,

L\2 = D2
s Φ .
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State of the art Magnetic WKB constructions

We now look for a formal solution in the form

λ ∼
∑
j≥0

λjh
j , a ∼

∑
j≥0

ajh
j

such that L\Φa = λa.
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State of the art Magnetic WKB constructions

We have to find (λ0, a0) such that

L\0a0 = λ0a0 .

We must choose
λ0 = µ0 .

Thus we have to find a0 such that

M\
s,i∇Φ(s)a0 = µ0a0 .

We choose a0 in the form

a0(s, t) = u\s,i∇Φ(s)(t)b0(s) ,

where b0 has to be determined and Φ is the solution of the following eikonal equation
(justified by our analyticity assumptions)

µ\(s, i∇sΦ) = µ0 .
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State of the art Magnetic WKB constructions

Collecting the terms in h1, we obtain the first transport equation

(L\0 − µ0)a1 = −(L\1 − λ1)a0 .

Pointwise in s, the Fredholm compatibility condition writes

(λ1 − L\1)a0 ∈ (Ker(L\0
∗ − µ0))⊥ .

We have Ker(L\0
∗−µ0) = span(u\

s,−i∇Φ(s)
), so that the compatibility condition is equivalent

to

λ1

〈
u\s,i∇Φ(s)b0(s), u\

s,−i∇Φ(s)

〉
L2(Rm,dt)

=
〈
L\1u

\
s,i∇Φ(s)b0(s), u\s,−i∇Φ(s)

〉
L2(Rm,dt)

,

for all s ∈ Rm.
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State of the art Magnetic WKB constructions

By using a Feynman-Hellmann formula, we are led to introduce

T = 1
2

(
∇ξµ\ · Ds + Ds · ∇ξµ\

)
,

and we get the equation

Tb0 = λ1b0 .

Then, λ1 has to be chosen to solve the linearized transport equation at the singular point
s = 0 and this condition is nothing but the belonging to the spectrum of the “harmonic
oscillator” of symbol 1

2
Hessx0,ξ0µ.
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State of the art Magnetic WKB constructions

A fundamental application of our ideas, after Fournais-Helffer

(constant magnetic field and Neumann conditions)
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State of the art Magnetic WKB constructions

We have recently made the following conjecture for the case of the magnetic ellipse:

λ2(~)− λ1(~) ∼
~→0

~
13
8

2
5
2

√
π

(
−κ′′(0)µ′′(ζ0)

) 1
4

(
κ (0)−κ

(
`

4

)) 1
2

C
3
4

1 A

∣∣∣∣cos

(
`

2

(
γ0

h
− ζ0

h
1
2

+ α0

))∣∣∣∣ e−S/~
1
4
,

where

S =

√
2C1

µ′′(ζ0)

∫ `
2

0

√
κ(0)− κ(s)ds ,

A = exp

−∫
[0, `

4
]

∂s
√
κ(0)− κ(s)−

√
−κ′′(0)

2√
κ(0)− κ(s)

ds

 ,

and where κ is the curvature of the boundary (maximal at 0 and π) and where all the
constants are related to explicit model operators.
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State of the art Magnetic WKB constructions

Numerically checked...
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(simulations from 10 years ago versus our conjecture)
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State of the art Magnetic WKB constructions

- The audience might have been surprised by the first part of this talk...

- It was about semiclassical analysis, but the classical analysis appeared nowhere.

- What is the relation between the Lorentz force and the magnetic Laplacian?

- Can we describe the magnetic bound states from the classical dynamics?
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From the Lorentz force to the eigenvalues Eigenvalues asymptotics

Preliminary comment

The Newton equation of a charged particle submitted to a magnetic field is

mq̈ = eq̇ × B ,

Take m = e = 1. Consider an A such that B = ∇× A. The skew-symmetric matrix
associated with B is

MB = tJA − JA ,

so that the equation becomes
q̈ = MBq̇ .

This can be reformulated as

d
dt

(q̇ + A(q)) = tJAq̇ .

By introducing the momentum variable p = q̇ + A(q), we see that (q, p) evolves
according to the Hamiltonian flow associated with H(q, p) = 1

2
‖p − A(q)‖2.
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From the Lorentz force to the eigenvalues Eigenvalues asymptotics

For the rest of the talk, we are concerned with

L~ = (−i~∇− A)2

on Rd , with d = 2, 3.
Its ~-symbol, in the Weyl quantization, is

H(q, p) = ‖p − A(q)‖2 =
d∑

k=1

(pk − Ak(q))2.

The characteristic manifold of H is

Σ = {(q, p) ∈ R2d : p = A(q)} .

The phase space Rd × Rd is equipped with the canonical symplectic form

ω0 = dp ∧ dq .
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Did you say Weyl quantization?

We recall that

Opw
~ aψ(q) =

1

(2π~)d

∫
R2d

e i〈q−y,p〉/~a
(q + y

2
, p
)
ψ(y)dydp ,

for ψ ∈ S(Rd). We have
L~ = Opw

~ H .
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We introduce the parametrization of Σ

Rd 3 q 7→ j(q) := (q,A(q)) ∈ Rd × Rd

and its satisfies the magnetic-symplectic relation:

j∗ω0 = dα .
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In the last years, Helffer and Kordyukov have intensively worked on the case of Rd with
non-vanishing magnetic fields:

- In two dimensions, they have proved that λn(~) can be expanded in powers of ~
1
2 .

- In three dimensions, via a tricky construction of quasimodes, they have conjectured that

λn(~) could be expanded in powers of ~
1
4 .
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Two results

- We have related the eigenvalues to the classical dynamics.

- Let us discuss two corollaries of our main normal form theorems.

- Many discussions with F. Faure and Y. Colin de Verdière have stimulated the proofs
of these results.
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In two dimensions

Theorem (R.-Vũ Ngo.c, after Helffer-Kordyukov)

Let us assume that

(i) B admits a unique minimum at q0 that positive and non degenerate,

(ii) lim inf
|q|→+∞

B(q) > b0 := B(q0).

Then the eigenvalue λm(~) admit a full asymptotic expansion in ~ and

λm(~) = b0~ +
[
θ2D(q0)

(
m − 1

2

)
+ ζ2D(q0)

]
~2 +O(~3)

where

θ2D(q0) =

√
det Hessq0B

b2
0

.
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This approximation is uniform in m as soon as m is of order ~−1+η for η > 0. The
remainder becomes O(~2+η).
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In three dimensions

Theorem (Helffer-Kordyukov-R.-Vũ Ngo.c)

Let us assume that

(i) b := ‖B‖ admits a unique minimum at q0 that is positive and non degenerate,

(ii) lim inf
|q|→+∞

b > b0 := b(q0) and ‖∇B‖ ≤ C(1 + ‖B‖).

Then the m-th eigenvalue admits a full asymptotic expansion in ~
1
2 and

λm(~) = b0~ + σ3D(q0)~
3
2 +

[
θ3D(q0)

(
m − 1

2

)
+ ζ3D(q0)

]
~2 +O(~

5
2 )

where

σ3D(q0) =

√
Hessq0b (B,B)

2b2
0

, θ3D(q0) =

√
det Hessq0b

Hessq0b (B,B)
.

N. R. 54 / 123



From the Lorentz force to the eigenvalues Eigenvalues asymptotics

This approximation is uniform in m as soon as m is of order ~−
1
2

+η for η > 0. The
remainder becomes O(~2+η).
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General strategy

In order to obtain uniform estimates of the magnetic spectrum, we will:

- straighten the magnetic(-symplectic) geometry,

- implement a formal Birkhoff normal form,

- quantize the normal form via (adaptations of) the Egorov’s theorem,

- establish (second) microlocal estimates (and establish some semiclassical Weyl
estimates),

- repeat this procedure as often as necessary...
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From the Lorentz force to the eigenvalues In two dimensions

1 State of the art
Context and motivations
Groundenergy and magnetic curvature
Magnetic Born-Oppenheimer approximation
Magnetic WKB constructions

2 From the Lorentz force to the eigenvalues
Eigenvalues asymptotics
In two dimensions
In three dimensions

3 WKB constructions in 2D wells
Result
Heuristics
Preliminaries
Eikonal eiquation
Transport equations
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The manifold Σ is symplectic. Thus we may find local symplectic coordinates x1, ξ1, x2, ξ2

such that

(a) z1 = (x1, ξ1) represents the distance to Σ,

(b) z2 parametrizes Σ.

In these coordinates, the Hamiltonian takes the form

H(z1, z2) = H0 +O(|z1|3) , where H0 = B(g−1(z2))|z1|2 .

Let us explain this in detail.
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Normal symplectic coordinates

Lemma

For any q ∈ Ω, the vectors

u1 :=
1√
|B|

(e1,
tTqA(e1)) , v1 :=

1√
|B|

(e2,
tTqA(e2)) ,

form a symplectic basis of Tj(q)Σ
⊥.
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Normal symplectic coordinates

Recall that
j∗ω0 = dA ' B ,

where j : R2 → Σ is the embedding j(q) = (q,A(q)).
There exists a diffeomorphism g : Ω→ g(Ω) ⊂ R2

z2
such that g(q0) = 0 and

g∗(dξ2 ∧ dx2) = j∗ω0 .

The new embedding ̃ := j ◦ g−1 : R2 → Σ is symplectic.
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Normal symplectic coordinates

We introduce the map

Φ̃(z1, z2) = ̃(z2) + x1u1(g̃−1(z2)) + ξ1v1(g̃−1(z2)) .

This map is not symplectic. The Jacobian matrix is symplectic for z1 = 0. We can say
that

ω0 − Φ̃∗ω0

vanishes on {0} × Ω.
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Normal symplectic coordinates

Lemma

Let us consider ω0 and ω1 two 2-forms on R4 which are closed and non-degenerate. Let
us assume that ω1 = ω0 on {z1 = 0} × Ω where Ω is a bounded open set. In a
neighborhood of {z1 = 0} × Ω there exists a change of coordinates ψ1 such that

ψ∗1ω1 = ω0 and ψ1 = Id + O(|z1|2) .

The proof can be done with a Moser argument. See, for instance, Hofer-Zehnder, proof
of Theorem 1.
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Poincaré lemma

We can find a 1-form σ defined in a neighborhood of z1 = 0 such that

ω1 − ω0 = dσ and σ = O(|z1|2) .
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Moser argument

For t ∈ [0, 1], we let
ωt = ω0 + t(ω1 − ω0) .

The 2-form ωt is closed and non-degenerate (up to choosing a neighborhood of z1 = 0
small enough). We look for ψt such that

ψ∗t ωt = ω0 .

For that purpose, let us determine a vector field Xt such that

d

dt
ψt = Xt(ψt) .
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Moser argument

By using the Cartan formula, we get

0 =
d

dt
ψ∗t ωt = ψ∗t

(
d

dt
ωt + ι(Xt)dωt + d(ι(Xt)ωt)

)
.

This becomes
ω0 − ω1 = d(ι(Xt)ωt) ,

and we are led to
ι(Xt)ωt = −σ .

By non-degeneracy of ωt , this determines Xt .

Choosing a neighborhood of (0, 0)× U small enough, we infer that ψt exists until the
time t = 1 and that it satisfies ψ∗t ωt = ω0. Since σ = O(|z1|2), we get

ψ1 = Id + O(|z1|2) .
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Normal symplectic coordinates

We let Φ := Φ̃ ◦ ψ1 and Φ is now symplectic. Elementary computations provide

H ◦ Φ(z1, z2) = H ◦ Φ|z1=0 + TH ◦ Φ|z1=0(z1) +
1

2
T 2(H ◦ Φ)|z1=0(z2

1 ) + O(|z1|3)

= 0 + 0 + |B(g−1(z2))||z1|2 + O(|z1|3) .
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We let H0 = |B(g−1(z2))||z1|2.

Proposition

For γ ∈ O3, there exist two formal series τ , κ ∈ O3 such that

e i~
−1 adτ (H0 + γ) = H0 + κ ,

with [κ, |z1|2] = 0.

Explicitly,

[κ1, κ2](x , ξ, ~) = 2 sinh
( ~

2i
�
)(
κ1(t, τ, ~)κ2(y , η, ~)

)∣∣∣
t=y=x,
τ=η=ξ

where

� =
2∑

j=1

∂τj∂yj − ∂tj∂ηj .
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Theorem (R.-Vũ Ngo.c, after Ivrii)

For h small enough, the exists a Fourier Integral Operator U~ such that

U∗~U~ = I + Z~, U~U
∗
~ = I + Z ′~ ,

where Z~,Z
′
~ are pseudors vanishing microlocally in a neighborhood of Ω̃ ∩ Σ and such

that
U∗~L~,AU~ = N~ + R~,

N~ is a pseudor belonging to S(m) and commuting with

I~ := −~2 ∂
2

∂x2
1

+ x2
1 ,

N~ = H0
~ + Q~, where H0

~ = Opw
~ (H0), H0 = B(ϕ−1(z2))|z1|2, and Q~ commutes

with I~ and is relatively bounded with respect to H0
~ with arbitrary small bound.
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We assume that the magnetic field does not vanish and is confining:

∃C̃1 > 0, M0 > 0, B(q) ≥ C̃1 for |q| ≥ M0.

N. R. 70 / 123



From the Lorentz force to the eigenvalues In two dimensions

Theorem

Let 0 < C1 < C̃1. Then, the spectra of L~ and N~ = H0
~ + Q~ in (−∞,C1~] are discrete.

Let 0 < λ1(~) ≤ λ2(~) ≤ · · · be the eigenvalues of L~ and 0 < µ1(~) ≤ µ2(~) ≤ · · · the
one of N~. Then, for all j ∈ N∗ such that λj(~) ≤ C1~ and µj(~) ≤ C1~, we have

|λj(~)− µj(~)| = O(~∞).
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Now, I present the result obtained with B. Helffer, Y. Kordyukov and Vũ Ngo.c in three
dimensions.
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Moving magnetic frame

Let us assume that B(0) 6= 0 so that B is not 0 near 0. We can even assume that
B(0) = ‖B(0)‖e3 and we define

b =
B

‖B‖
and the smooth vectors c and d so that (b, c, d) is a direct orthonormal basis.
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Straightening the magnetic 2-form

We introduce the coordinate along the magnetic field, via:

∂3χ(q̂) = b(χ(q̂)) , χ∗(dα) = dq̂1 ∧ dq̂2 .

Note that

(i) b belongs to the kernel of the magnetic 2-form dα.

(ii) j∗ω0 = dα.
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Basis of the tangent space

We can reparametrize Σ

ι : Ω̂ −→ Σ

q̂ 7→ (χ(q̂),A1(χ(q̂)) ,A2(χ(q̂)),A3(χ(q̂))) ,

and define a basis of the tangent space (f1, f2, f3) :

fj = (Tχ(ej),TA ◦ Tχ(ej)), j = 1, 2, 3 .

We notice that

ω0(fj , fk) = dα(Tχ(ej),Tχ(ek)) = χ∗dα(ej , ek) = dq̂1 ∧ dq̂2(ej , ek) .
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Basis of the symplectic orthogonal

The following vectors of R3 × R3 form a basis of the symplectic orthogonal of Tι(q̂)Σ:

f4 = ‖B‖−1/2(c, (tTχ(q̂)A)c) , f5 = ‖B‖−1/2(d, (tTχ(q̂)A)d) .

We need a sixth vector. We introduce f6 = (0, b) + ρ1f1 + ρ2f2 where ρ1 and ρ2 are
determined by the relations ω0(fj , f6) = 0 for j = 1, 2.

Lemma

The family (fj)j=1,...,6 is a symplectic basis.
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We introduce the local diffeomorphism

(x , ξ) 7→ ι(x2, ξ2, x3) + x1f4(x2, ξ2, x3) + ξ1f5(x2, ξ2, x3) + ξ3f6(x2, ξ2, x3) .

It is symplectic “on” Σ. Thus we can make it symplectic modulo a correction that is
tangent to the identity (Moser-Weinstein’s lemma). In these new coordinates, H becomes

ξ2
3 + b(x2, ξ2, x3)(x2

1 + ξ2
1) +O(|x1|3 + |ξ1|3 + |ξ3|3) .
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Formal series of pseudo-differential operators

We consider the space E of formal series in (x1, ξ1, ξ3, ~) with smooth coefficients in
(x2, ξ2, x3) :

E = C∞x2,ξ2,x3
[[x1, ξ1, ξ3, ~]] .

We equip E of the semiclassical Moyal product ? (w.r.t. all the variables) and the
commutator of κ1 and κ2 is by definition

[κ1, κ2] = κ1 ? κ2 − κ2 ? κ1 .

The degree of xα1
1 ξα2

1 ξβ3 ~
` is α1 + α2 + β + 2` = |α|+ β + 2`. The space of formal series

with valuation at least N is denoted by ON . For all τ , γ ∈ E , we let adτ γ = [τ , γ].
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Proposition

For γ ∈ O3, there exist two formal series τ , κ ∈ O3 such that

e i~
−1 adτ (H0 + γ) = H0 + κ ,

with [κ, |z1|2] = 0 and H0 = ξ2
3 + b(x2, ξ2, x3)|z1|2.
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We may write κ in the form

κ =
∑
k≥3

∑
2`+2m+β=k

~`c`,m(x2, ξ2, x3)|z1|2mξβ3 .

This series may be rearranged:

κ =
∑
k≥3

∑
2`+2m+β=k

~`c?`,m(x2, ξ2, x3)(|z1|2)?mξβ3 .
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Theorem (First normal form, after Ivrii)

If B(q0) 6= 0, there exists a neighborhood U0 of (q0,A(q0)) and symplectic coordinates
(x1, ξ1, x2, ξ2, x3, ξ3) such that Σ = {x1 = ξ1 = ξ3 = 0} and a FIO U~ microlocally unitary
near U0 and a smooth function, with compact support in Z and ξ3, f ?(~,Z , x2, ξ2, x3, ξ3)
whose Taylor expansion Z , ξ3, ~ is∑

k≥3

∑
2`+2m+β=k

~`c?`,m(x2, ξ2, x3)Zmξβ3

so that
U~
∗L~U~ = N~ +R~ ,

with
N~ = ~2D2

x3
+ I~ Opw

~ b + Opw
~ f ?(~, I~, x2, ξ2, x3, ξ3) ,

N. R. 82 / 123



From the Lorentz force to the eigenvalues In three dimensions

Confinement

Assumption

We assume that
b(q) ≥ b0 := inf

q∈R3
b(q) > 0 ,

and that there exists C > 0 such that

‖∇B(q)‖ ≤ C (1 + b(q)) , ∀q ∈ R3 .

By the Persson theorem and an Helffer-Morame theorem, the bottom of the essential
spectrum is asymptotically larger than ~b1, where

b1 := lim inf
|q|→+∞

b(q)
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Confinement

Assumption

We assume that
0 < b0 < b1 .

This assumption ensures that the infimum of b is attained (say at 0 with A(0) = 0). We
also assume that (confinement near 0) there exist ε > 0 and β0 ∈ (b0, b1) such that

{b(q) ≤ β0} ⊂ D(0, ε) .
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Corollary

We introduce
N ]

~ = Opw
~

(
N]~

)
,

with
N]~ = ξ2

3 + I~b(x2, ξ2, x3) + f ?,](~, I~, x2, ξ2, x3, ξ3)

and where b is a convenient extension of b outside D(0, ε) and where
f ?,] = χ(x2, ξ2, x3)f ?, with χ is a smooth cutoff being 1 near D(0, ε). We also introduce

N [1],]
~ = Opw

~

(
N

[1],]
~

)
,

where N
[1],]
~ = ξ2

3 + ~b(x2, ξ2, x3) + f ?,](~, ~, x2, ξ2, x3, ξ3).
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Corollary (continued)

If ε and the support of f ?,] are small enough, then

(a) The spectra of L~ and N ]
~ sous β0~ coincide modulo O(~∞).

(b) For all c ∈ (0,min(3b0, β0)), the spectra L~ and N [1],]
~ under c~ coincide modulo

O(~∞).
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Assumption

We assume that b admits a unique minimum at 0 (that is positive) and that
T 2

0 b(B(0),B(0)) > 0.
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We have ∂3b(0, 0, 0) = 0 and in the coordinates (x2, ξ2, x3),

∂2
3b(0, 0, 0) > 0 .

It follows from the implicit functions theorem that, for x2 small enough, there exists a
smooth function (x2, ξ2) 7→ s(x2, ξ2), s(0, 0) = 0, such that

∂3b(x2, ξ2, s(x2, ξ2)) = 0 .

We let
ν(x2, ξ2) := ( 1

2
∂2

3b(x2, ξ2, s(x2, ξ2)))1/4 .
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Theorem

There exist a neighborhood V0 of 0 and a FIO V~ microlocally unitary near V0 and such
that

V ∗~N
[1]
~ V~ =: N [1]

~ = Opw
~

(
N

[1]
~

)
,

where N
[1]
~ = ν2(x2, ξ2)

(
ξ2

3 + ~x2
3

)
+ ~b(x2, ξ2, s(x2, ξ2)) + R~ and R~ is a semiclassical

symbol R~ = O(~x3
3 ) +O(~ξ2

3) +O(ξ3
3) +O(~2).
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Corollary

We introduce
N [1],]

~ = Opw
~

(
N

[1],]
~

)
,

where N
[1],]
~ = ν2(x2, ξ2)

(
ξ2

3 + ~x2
3

)
+ ~b(x2, ξ2, s(x2, ξ2)) + R]~, with

R]~ = χ(x2, ξ2, x3, ξ3)R~, and where ν is a convenient extension of ν.
If ε and the support of χ are small enough, then

(a) The spectra of N [1],]
~ and N [1],]

~ below β0~ coincide modulo O(~∞).

(b) For all c ∈ (0,min(3b0, β0)), the spectra of L~ and N [1],]
~ below c~ coincide modulo

O(~∞).
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Towards the second microlocalization

We let h = ~
1
2 and, if A~ is a semiclassical symbol on T ∗R2, having an expansion in ~

1
2 ,

we write
A~ := Opw

~ A~ = Opw
h Ah =: Ah ,

with
Ah(x2, ξ̃2, x3, ξ̃3) = Ah2 (x2, hξ̃2, x3, hξ̃3) .

N. R. 91 / 123



From the Lorentz force to the eigenvalues In three dimensions

Theorem

There exist a unitary operator Wh and a smooth function g?, with arbitrarily small
compact support, with respect to the second variable Z and compactly supported in
(x2, ξ2) such that the Taylor series in Z, h is∑

2m+2`≥3

cm,`(x2, ξ2)Zmh` ,

so that W ∗h N
[1],]
h Wh =: Mh = Opw

h (Mh) ,

with
Mh = h2b(x2, hξ̃2, s(x2, hξ̃2)) + h2Jh Opw

h ν
2(x2, hξ̃2) + h2g?(h,Jh, x2, hξ̃2) + h2Rh .
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From the Lorentz force to the eigenvalues In three dimensions

Theorem (continued)

where

(a) the operator N
[1],]
h is N [1],]

~ ,

(b) we have let Jh = ξ̃2
3 + x2

3 ,

(c) the remainder Rh satisfies Rh(x2, hξ̃2, x3, ξ̃3) = O((x3, ξ̃3)∞).
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Corollary

We have
M]

h = Opw
h

(
M]

h

)
,

with
M]

h=h2b(x2, hξ̃2, s(x2, hξ̃2)) + h2Jhν
2(x2, hξ̃2) + h2g?(h,Jh, x2, hξ̃2) .

We define
M

[1],]
h = Opw

h

(
M

[1],]
h

)
,

where
M

[1],]
h =h2b(x2, hξ̃2, s(x2, hξ̃2)) + h3ν2(x2, hξ̃2) + h2g?(h, h, x2, hξ̃2) .
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From the Lorentz force to the eigenvalues In three dimensions

Corollary

If ε and the support of g? are small enough, we have:

(a) For all η > 0, the spectra of N
[1],]
h and M]

h below b0h
2 +O(h2+η) coincide modulo

O(h∞).

(b) For c ∈ (0, 3), the spectra of M]
h and M

[1],]
h below b0h

2 + cν2(0, 0)h3 coincide
modulo O(h∞).

(c) If c ∈ (0, 3), the spectra of L~ and M[1],]
~ below b0~ + cν2(0, 0)~

3
2 coincide modulo

O(~∞).

N. R. 95 / 123



From the Lorentz force to the eigenvalues In three dimensions

Formal series

We define an appropriate space of formal series in (x3, ξ̃3, h). Let us consider

F := {d s. t. ∃c ∈ S0(R4) : d(x2, ξ̃2;µ, h) = c(x2, µξ̃2;µ, h)},

and
E := F [[x3, ξ̃3, h]],

equipped with the Poisson bracket

E2 3 (f , g) 7→ {f , g} =
∑
j=2,3

∂f

∂ξ̃j

∂g

∂xj
− ∂g

∂ξ̃j

∂f

∂xj
∈ E ,

and of the Moyal product [f , g ].
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From the Lorentz force to the eigenvalues In three dimensions

Assumption

The function b admits a unique minimum en 0 (positive) and non degenerate.
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From the Lorentz force to the eigenvalues In three dimensions

Theorem

There exist a ~-FIO unitary Q
~

1
2

whose phase may be expanded in powers ofe ~
1
2 and a

smooth function k?, with compact support in Z, such that

Q∗
~

1
2
M[1],]

~ Q
~

1
2

= F~ + G~ ,

where

(a) F~ is the operator b0~ + ν2(0, 0)~
3
2 − ‖(∇ν2)(0,0)‖2

2θ
~2 + ~

(
θ
2
K~ + k?(~

1
2 ,K~)

)
,

(b) the function k? satisfies k?(~
1
2 ,Z) = O((~

1
2 ,Z

1
2 )3),

(c) the remainder is in the form G~ = Opw
~ (G~), with G~ = ~O(|z2|∞).
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From the Lorentz force to the eigenvalues In three dimensions

Corollary

If ε and the support of k are small enough, we have

(a) For all η ∈
(
0, 1

2

)
, the spectra of M[1],]

~ and F~ below b0~ +O(~1+η) coincide
modulo O(~∞).

(b) For all c ∈ (0, 3), the spectra of L~ and F~ below b0~ + cν2(0, 0)~
3
2 coincide modulo

O(~∞).
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[1]
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N~ N [1]
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WKB constructions in 2D wells Result

We consider Ω ⊂ R2, bounded and L~ = (−i~∇− A)2. We assume B is analytic in a
neighborhood of Ω.

Assumption

B|Ω has a non-degenerate local and positive minimum at (0, 0). Moreover, we can write

B(x1, x2) = b0 + αx2
1 + γx2

2 + O(‖x‖3) , with 0 < α ≤ γ .
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WKB constructions in 2D wells Result

Theorem (Bonthonneau-R.)

Let ` ∈ N. There exist

i. a neighborhood V ⊂ Ω of (0, 0),

ii. an analytic function S on V satisfying

ReS(x) = b0
2

[ √
α√

α+
√
γ
x2

1 +
√
γ√

α+
√
γ
x2

2

]
+ O(‖x‖3) ,

iii. a sequence of analytic functions (aj)j∈N on V,

iv. a sequence of real numbers (µj)j∈N satisfying

µ0 = b0 , µ1 = 2`
√
αγ

b0
+

(
√
α+
√
γ)2

2b0
,

such that, for all J ∈ N, and uniformly in V,

eS/~

(−i~∇− A)2 − ~
J∑

j≥0

µj~j
e−S/~

J∑
j≥0

aj~j
 = O(~J+2) .
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WKB constructions in 2D wells Heuristics

Preliminary comment: WKB analysis and normal form

There exist a Fourier Integral Operator U~, quantizing a canonical transformation, and a
smooth function f~ such that, locally in space near 0 and microlocally near the characteristic
manifold of L~,

U~
∗L~U~ = Opw

h f~(H, z2) + O(~∞) .

where H = h2D2
x1

+ x2
1 . Moreover, f~(Z , z2) = ZB̂(z2) + O(~2) + O(Z 2), where B̂ is the

magnetic field “seen” on the characteristic manifold.
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WKB constructions in 2D wells Heuristics

Preliminary comment: WKB analysis and normal form

If we are interested in the low lying eigenvalues (which are essentially in the form
b0~ + µ1~2), we can look for a L2-normalized WKB Ansatz expressed in normal
coordinates as

Ψ~(x1, x2) = g~(x1)ψ~(x2) ,

where g~ is the first normalized eigenfunction of H. We find the effective eigenvalue
equation

Opw
~ (B̂ − b0)ψ~ = µ1~ψ~ + O(~2) ,

in which we insert the Ansatz ψ~ = e−S/~a. We get

B̂(x2,−iS ′(x2)) = b0 .
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WKB constructions in 2D wells Preliminaries

We consider the conjugated operator acting locally as

L S
~ = eS/~L~e

−S/~ = (~Dx1 − A1 + i∂x1S)2 + (~Dx2 − A2 + i∂x2S)2 .

We have

L S
~ = (−A1 + i∂x1S)2 + (−A2 + i∂x2S)2 + i~∇ · A− ~2∆ + ~∆S + 2~(∇S + iA) · ∇ .

We seek to determine S so that there exist a family of functions (aj)j∈N defined in a
neighborhood of (0, 0) and a sequence of real numbers (µj)j∈N such that, in the sense of
asymptotic series,

L S
~

∑
j≥0

~jaj

 ∼ ~

∑
j≥0

µj~j
∑

j≥0

~jaj

 .
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WKB constructions in 2D wells Preliminaries

Choice of gauge

Lemma

There exists an analytic and real-valued function ϕ, in a neighborhood of Ω, such that

∆ϕ = B , ϕ(x1, x2) =
B(0, 0)

4
(x2

1 + x2
2 ) + O(‖x‖3) .

We let
A = (∇ϕ)⊥ .
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WKB constructions in 2D wells Preliminaries

An effective eikonal equation

If a : R2 → C is an analytic function near (0, 0) ∈ R2, one denotes by ã the function
defined near (0, 0) ∈ C2 by

ã(z ,w) = a
(z + w

2
,
z − w

2i

)
.

We have ã(z , z) = a(Re z ,=z).

Lemma

There exists a holomorphic function w defined in a neighborhood of 0 satisfying

B̃(z ,w(z)) = b0 .

and such that

w(0) = 0 , w ′(0) =

√
γ −
√
α

√
γ +
√
α
.
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WKB constructions in 2D wells Preliminaries

Lemma

Consider a function w given by the previous lemma and, in a neighborhood of 0, the
holomorphic function defined by

f (z) = −2

∫
[0,z]

∂z ϕ̃(ζ,w(ζ))dζ .

We have

f (0) = 0 , f ′(0) = 0 , f ′′(0) =
b0

2

√
α−√γ
√
γ +
√
α
.

In particular, letting S = ϕ+ f , we have

ReS(x) =
b0

2

[ √
α√

α +
√
γ
x2

1 +

√
γ

√
α +
√
γ
x2

2

]
+ O(‖x‖3) .
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WKB constructions in 2D wells Eikonal eiquation

Determining the phase modulo holomorphic functions

Collecting the terms of order 0, we get

(−A1 + i∂x1S)2 + (−A2 + i∂x2S)2 = 0 ,

and thus

(−A1 + i∂x1S + i(−A2 + i∂x2S))(−A1 + i∂x1S − i(−A2 + i∂x2S)) = 0 .

Let us consider an S such that

−A1 + i∂x1S + i(−A2 + i∂x2S) = 0 ,

so that

2∂zS = −iA1 + A2 , ∂z =
1

2
(∂x1 + i∂x2 ) .

We have 2∂zϕ = −iA1 + A2 and thus S is in the form

S = ϕ+ f (z) ,

where f is a holomorphic function near (0, 0).
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WKB constructions in 2D wells Eikonal eiquation

Rewriting the operator in terms of complex derivatives

Note that ∆ = 4∂z∂z and thus
∆S = B .

We get
L S

~ = −~2∆ + ~B + 2~(∇S + iA) · ∇ .

We have
(∇S + iA) · ∇ = (∂1S + iA1)∂1 + (∂2S + iA2)∂2

so that

(∇S + iA) · ∇ = (∂1ϕ− i∂2ϕ+ f ′(z))∂1 + (∂2ϕ+ i∂1ϕ+ if ′(z))∂2 .
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WKB constructions in 2D wells Eikonal eiquation

Therefore, we can write

L S
~ = −4~2∂z∂z + ~B + 4~(2∂zϕ+ f ′(z))∂z ,

and consider its complexified extension

L S
~ = ~ṽ(z ,w)∂w + ~B̃ − 4~2∂z∂w , ṽ(z ,w) = 8∂z ϕ̃(z ,w) + 4f ′(z) ,

acting on analytic functions of (z ,w) ∈ C2.
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WKB constructions in 2D wells Transport equations

First transport equation

The first transport equation, obtained by gathering the terms of order ~, is

(ṽ(z ,w)∂w + B̃(z ,w)− µ0)ã0 = 0 .
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WKB constructions in 2D wells Transport equations

Finding µ0 and f

Let us for now assume that f is given and let w be the unique (holomorphic and local)
solution of

8∂z ϕ̃(z ,w(z)) + 4f ′(z) = 0 .

We deduce that the transport equation has solutions if and only if the exists ` ∈ N such
that

B̃(z ,w(z))− µ0 = −`∂w ṽ(z ,w(z)) .

But, from the definition of ṽ , this means

µ0 = (2`+ 1)B̃(z ,w(z)) .

Since µ0 is a constant, we deduce that µ0 = (2`+ 1)b0 and

B̃(z ,w(z)) = b0 .
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WKB constructions in 2D wells Transport equations

Finding µ0 and f

We choose w(z) = w(z), where w(z) is given by a previous lemma. With this choice for
w , we define f as the unique function such that f (0) = 0 and

f ′(z) = −2∂zϕ(z ,w(z)) .
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WKB constructions in 2D wells Transport equations

Solving the transport equation

We notice that

B̃(z ,w)− b0

8∂zϕ(z ,w) + 4f ′(z)

defines a holomorphic function near (0, 0). The solutions of the transport equation (with
µ0 = (2`+ 1)b0) have to take the form

ã0(z ,w) = A0(z)(w − w(z))`J`(z ,w) ,

where

J`(z ,w) = exp

[
−
∫ w

w(z)

B̃ − µ0

ṽ
(z ,w ′) +

`

w ′ − w(z)
dw ′

]
.

The function A0 is a holomorphic function to be determined. We take ` = 0.
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WKB constructions in 2D wells Transport equations

Second transport equation

The equation obtained by gathering the terms in ~2 can be written as

(ṽ(z ,w)∂w + B̃(z ,w)− µ0)ã1 = (µ1 + 4∂z∂w ) ã0 .
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WKB constructions in 2D wells Transport equations

Effective equation

This equation has solutions if and only if

(µ1 + 4∂z∂w ) ã0(z ,w(z)) = 0 .

This means that

4A ′0 (z)∂wJ(z ,w(z)) + [µ1 + 4∂w∂zJ(z ,w(z))] A0(z) = 0 .
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WKB constructions in 2D wells Transport equations

From the definition of J and Taylor expansions, we get

4∂wJ(z ,w(z)) ∼
z→0
−2

√
αγ

b0
z , 4∂w∂zJ(0, 0) = −

(
√
α +
√
γ)2

2b0
.
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WKB constructions in 2D wells Transport equations

We get that there exists ` ∈ N such that

µ1 = 2`
√
αγ

b0
+

(
√
α+
√
γ)2

2b0
.

Then, we can write A0(z) = cz`Â0(z), where Â0(z) is determined with Â0(0) = 1. The
constant c is a normalization constant, we choose c = 1.
The solutions take the form

ã1(z ,w) = â1(z ,w) + A1(z)J(z ,w) ,

where A1 remains to be determined.

This procedure can be continued at any order.
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WKB constructions in 2D wells Transport equations

Merci de votre attention !
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